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The transition of RNA polymerase II (Pol II) from transcription initiation into productive elongation in
eukaryotic cells is regulated by the P-TEFb kinase, which phosphorylates the C-terminal domain of paused Pol II
at promoter-proximal regions. Our recent study found that P-TEFb (in an inhibited state bound to the 7SK snRNP
complex) interacts with the KAP1/TRIM28 transcriptional regulator, and that KAP1 and the 7SK snRNP co-occupy
most gene promoters containing paused Pol II. Here we provide a detailed experimental description and analysis
of the ChIP-seq datasets that have been deposited into Gene Expression Omnibus (GEO): GS72622, so that indepen-
dent groups can replicate and expandupon thesefindings.Wepropose these datasetswould provide valuable infor-
mation for researchers studyingmechanisms of transcriptional regulation including Pol II pausing andpause release.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Direct link to deposited data

Deposited data can be found at: http://www.ncbi.nlm.nih.gov/geo/
query/ acc.cgi?acc = GSE72622.

2. Experimental design, materials and methods

2.1. Cell culture and reagents

The human colorectal HCT116 cell line (obtained from ATCC)
was maintained (at a confluency not greater than 90%) in DMEM
supplemented with 10% heat-inactivated FBS and 1× penicillin/
streptomycin at 37 °C with 5% CO2.

2.2. Crosslinking and sonication of cells for ChIP assay

Low passage (b5) HCT116 cells were grown in T150 cm2 flasks and
removed from the plate using 0.05% trypsin–EDTA and 1× PBS, and
spun down at 1000 g at 4 °C for 5min. Excess trypsin/PBSwas aspirated
and the cell pellet was resuspended to a density of 1 × 107 cells/mL in
PBS. Methanol-free formaldehyde (16% stock) was added dropwise to
a 0.5% final concentration and gently nutated at room temperature for
10 min. To ensure that no cell clumps formed, the cell suspension was
pipetted up and down throughout several times during the crosslinking
step. Crosslinking was quenched through the dropwise addition of gly-
cine to a final concentration of 0.125Mand gently nutated at room tem-
perature for 10 min. The crosslinked cell suspension was then spun
down at 800 g at 4 °C for 5 min. The cell pellet was washed twice
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Flowchart showing the pipeline used for ChIP-seq data analysis. See text for details.
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(spun down at 1000 g at 4 °C for 5 min) in cold PBS to eliminate excess
formaldehyde and glycine.

The cell pellet was then resuspended in cold Farnham lysis buffer
(5 mM piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES) pH 8.0,
85 mM KCl, 1 mM PMSF, 1× EDTA-free protease inhibitor, 0.5% NP-
40) to a final cell density of 1 × 107 cells/mL and dounce homogenized
(10 strokes) in a 1mL dounce homogenizer using a loose pestle (Whea-
ton). The cell suspension was then nutated at 4 °C for 30 min and spun
down at 1000 g at 4 °C for 10min. These combined steps are to separate
cytosolic components from the nucleus. The supernatant (cytosol) was
discarded and the pellet (nuclei) was resuspended in cold Szak's RIPA
buffer (50 mM Tris–HCl pH 8.0, 150 mM NaCl, 2.5 mM EDTA, 1% NP-
40, 0.1% SDS, 0.5% deoxycholic acid, 1× EDTA-free protease inhibitor,
1 mM PMSF) to a final density of 2.5 × 107 cells/mL and dounce homog-
enized (10 strokes) in a 1 mL dounce homogenizer using a tight pestle
(Wheaton). The nuclear lysate was then transferred to thin-walled
1.5 mL TPX tubes (Diagenode) for a final volume of 250 μL per tube
(this is a critical limit that must be respected). Samples were then son-
icated until DNA was fragmented to an average distribution of about
200–300 bp using a water bath Bioruptor (Diagenode) for a total of
45 cycles (30 s on and 30 s off). To further ensure sonication efficiency,
we allowed a 20min cool-down of the water bath after every 20 cycles.
To verify that DNAwas fragmented to the appropriate size (200–300 bp
average distribution), a fraction of lysate was reverse crosslinked, the
DNA was purified and run on a 1.5% agarose gel stained with ethidium
bromide alongside a 100 bp ladder at 5 V/cm.

2.3. ChIP assay

Dynabeads Protein G (10004D, Life Technologies) (70 μL of slurry
per ChIP) were equilibrated with RIPA buffer. 4 μg of each antibody di-
luted in 500 μL of RIPA (see McNamara et al. [1]) was conjugated to
beads at room temperature for 1 h. Antibody-coated beads were then
blocked with 0.3 mg/mL BSA diluted in RIPA at 4 °C for 1 h. Then, the
sonicated nuclear lysate (from point 2.2) was added to the blocked
antibody-coated beads and nutated at 4 °C for 2 h. Given the low levels
of ChIP recovery for some of the 7SK snRNP components, we optimized
the amount of sonicated cell nuclei used per ChIP assay as follows:
2.5 × 107 cell nuclei for Pol II, H3K4me3, H3K4me1, and H3K27ac; and
5.0 × 107 cell nuclei for KAP1, Cdk9, Hexim1, and Larp7. Unbound nucle-
ar lysate was discarded and beads were washed twice with the follow-
ing cold buffers:

1. RIPA buffer (see above),
2. Low salt buffer (1% NP-40, 20 mM Tris–HCl pH 8.0, 150 mM NaCl,

0.1% SDS, 0.5% deoxycholic acid, 2.5 mM EDTA, 1 mM PMSF),
3. High salt buffer (1% NP-40, 20 mM Tris–HCl pH 8.0, 500 mM NaCl,

0.1% SDS, 0.5% deoxycholic acid, 2.5 mM EDTA, 1 mM PMSF),
4. LiCl buffer (1% NP-40, 20mM Tris HCl pH 8.0, 250mM LiCl, 0.1% SDS,

0.5% deoxycholic acid, 2.5 mM EDTA, 1 mM PMSF),
5. 1× Tris–HCl EDTA buffer (TE).

After washing, complexes were eluted off the beads using elution
buffer (1% SDS and 100mMNaHCO3) at 65 °C for 30min,with intermit-
tent vortexing. Protein-DNA complexes were decrosslinked using
decrosslinking buffer (50 mM Tris–HCl pH 6.8, 500 mM NaCl, 5 mM
EDTA, 0.5 mg/mL Proteinase K) at 60 °C for 4 h. DNA was then purified
using the Zymo ChIP DNA Clean and Concentrator Kit (Zymo Research).

2.4. ChIP DNA quality control

All ChIP DNA samples were quantified for concentration using the
Qubit® 2.0 Fluorometer (Thermo Fisher Scientific). A small fraction of
input and ChIP DNAwas used to test for enrichment at the NFKBIA pro-
moter (a Pol II paused gene) prior to library preparation and sequenc-
ing. The non-Pol II paused gene GREB1 was used as a negative control
[1–2]. Given that our ChIP DNA samples showed enrichment at the Pol
II paused NFKBIA promoter-proximal region (but not at the GREB1 neg-
ative control gene), we submitted our samples for high-throughput
sequencing.

2.5. ChIP DNA library preparation and sequencing

10–20 ng DNA (Input or ChIP from Point 2.3) were submitted to the
McDermott Center Sequencing Core at UT SouthwesternMedical Center
for library preparation and high-throughput sequencing using the
NextSeq500 (Illumina). Samples were end repaired, 3′-end adenylated
and barcodedwithmultiplex adapters (Applied Biosystems). After puri-
fication with Ampure XP beads (Beckman Coulter), samples were PCR
amplified for 15 cycles, size selected with Ampure XP beads, and quan-
tified on the Agilent 2100 BioAnalyzer. Emulsion PCR was then per-
formed and beads enriched on the EZ-Bead system. Each sample
yielded 2.5–5.0 × 107 total reads of 50 nt, depending on the sample.
For each sample, ~70–80% of unique reads mapped to the human ge-
nome (GRCh37/hg19).

3. Data analysis and results

Fig. 1 shows a detailed flowchart description of the steps/tools used
for data analysis.

3.1. Computational analysis and data transformation

All scriptingwas performed using Python 2.7.6. All ChIP-seq binding
events were loaded into a customMySQL database to allow for efficient
comparisons of multiple factors' binding loci. Fastq files obtained from
the sequencing core were first checked for quality using Fastqc, and
then trimmed of any adapters, barcodes, and low-quality sequences
using the Fastx toolkit (Fig. 1). For mapping and sorting, the ChIP-seq
output was aligned to the reference human genome (GRCh37/hg19)
using Bowtie v1.0.0 [3], allowing 1 mismatch (−v 1). Sequences
aligning to multiple locations in the reference genome were discarded.
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−S was specified to deliver .sam output, which was then sorted and
converted to binary (.bam) using Samtools [4]. For ChIP-seq peak call-
ing, the .sam files for all ChIP-seq marks were analyzed for binding
events using peak calling in theMACS2 software [5].When determining
peaks, duplicate read alignments were discarded to avoid amplification
artifacts from the sequencing PCR. All ChIP-seq files were normalized to
input sequencing files.

3.2. ChIP-seq data visualization

MACS2 was run in the callpeak mode with the –B and –SPMR flags
set to generate signal pileup tracks in bedGraph format on a per million
reads basis. This allows for direct comparison between individual tracks,
regardless of any differences in the sequencing depth. The bedgraph
files were converted to BigWig files using a custom script based on the
University of California at Santa Cruz (UCSC) tool ‘bedGraphToBigWig’.
The pileup tracks (.BigWig files) were visualized using Integrative Ge-
nomics Viewer (IGV) [6]. The normalized pileup tracks also served as
the input for many data visualizations as noted below.

3.3. Generation of ChIP-seq heatmaps

HOMER [7] annotatePeaks.pl was used to generate density matrices
using normalized bedGraph pileup tracks of ChIP-seq marks as input.
The –hist flag was set with a parameter of 50 bp bins and the –ghist
flag was also set to generate a density matrix. After density matrixes
were generated they were fed into Cluster 3.0 to generate a .cdt file. A
custom script was then used to rank the resulting .cdt file in order of de-
creasing density. We took the Pol II matrix and sorted it by decreasing
total density and then clustered all other ChIP-seq matrices to the
same sort order as Pol II. The resulting .cdt matrices were then fed into
Java TreeView 3.0 [8] to generate visual heatmaps.

3.4. Generation of ChIP-seq metagene plots

HOMER [7] annotatePeaks.pl was used to generate metagene plots
based on the average profile of a series of ChIP-seqmarks in normalized
bedGraph pileup tracks. The –hist flag was set using 50 bp bins for all
metagene profiles. Plots were centered on the TSS and extending the in-
dicated window (e.g. ±1 kb (−size 2000)).

3.5. GRO-seq analysis

We analyzed the nascent RNA-sequencing data (GRO-seq) generat-
ed by the Espinosa laboratory in the HCT116 cell line [9] to compare
transcription statuswith levels of Pol II and KAP1-7SK snRNP occupancy
at promoter-proximal regions. We ranked RefSeq genes located in the
positive strand in the human genome based on decreasing sense tran-
script levels surrounding the TSS. We then sorted the ChIP-seq datasets
of Pol II, KAP1, Cdk9, Hexim1, and Larp7 based on ranked GRO-seq data.
GRO-seq Fastq files [9] were downloaded from the ftp server of the
European Bioinformatics Institute (EBI) (ftp://ftp.sra.ebi.ac.uk/vol1/
fastq/) and then aligned using Bowtie v1.1.2 allowing for up to two
mismatches (−n 2) resulting in a sam output file (−S). Sam files
were then converted into sorted bam using Samtools v1.3 and fur-
ther converted into strand specific genome coverages using bedtools
(genomeCoverageBed). Entire documented analysis and parameters
can be found on our Github (https://github.com/Dorsolab/GD_
GenomicsData_Analysis).

3.6. Genome-wide factor distribution and co-occupancy analysis

To characterize the genome-wide distribution of the 7SK snRNP, we
employed an unbiased ChIP-seq approach to localize the individual
components: Larp7 (constitutively bound to the 3′ of 7SK RNA),
Hexim1 (7SK RNA-binding protein that tethers P-TEFb to the 7SK
snRNP), and Cdk9 (the kinase subunit of P-TEFb) [10]. We interrogated
the locations of these three components to identify with high-
confidence genomic domains marked by the 7SK snRNP (as opposed
to the detection of individual subunits not assembled on the snRNP).
We also examined the distribution of KAP1 to determine if it co-
occupies genomic domains with the 7SK snRNP, possibly forming a
KAP1-7SK snRNP complex [1].

To identify KAP1 and 7SK snRNP target genes we searched for KAP1,
Hexim1, Larp7, and Cdk9 narrow peaks (as defined by MACS) at
promoter-proximal regions of genes listed in the UCSC RefSeq database
(30,180 unique TSS). For the occupancy analysis, we defined a broader
promoter-proximal region window than others have used (−250 to
+1000 bp from the TSS). These thresholds were selected because we
found 13,048 genes having a Pol II summit using a narrow window
(−250 to+250 bp from the TSS) and 4268 additional genes containing
a Pol II summit, in addition to an H3K4me3 peak, at+250 to+1000 bp
from the TSS (Fig. 2A). It is unclear, however, whether this increase in
genes containing paused Pol II in the broader window is due to inaccu-
rate TSS annotations and/or that in some genes Pol II pauses further
downstream from the +100 site, as the Pol II metagene analysis
indicates (see below). Therefore, the broader window (−250 to
+1000 bp from the TSS) was used for the co-occupancy analysis, to
more completely capture genes that have all the hallmarks of paused
Pol II, even though the pausing may appear downstream of more
restrictive bounds of a currently annotated TSS.

To identify genes targeted by KAP1, the 7SK snRNP, and Pol II (re-
ferred to as KEC target genes for KAP1-7SK snRNP early Elongation
Complex), we first searched for Pol II summit locations in the broad
promoter-proximal region (−250 to+1000bp fromTSS) and analyzed
for co-occupancy of all KAP1-7SK snRNP components within a window
of −250 to +250 bp from the Pol II summit (narrow peak as deter-
mined by MACS) (Fig. 2B). This filter guarantees that the factors are
within a region where Pol II may realistically be considered paused,
and that they are all within a distance to interact (directly or indirectly)
with one another. We found 17,316 genes containing promoter-
proximal paused Pol II, 15,850 7SK snRNP target genes, 14,203 KAP1-
7SK snRNP target genes, and 12,211 KEC target genes (Fig. 2B and C).
This last number represents a large fraction of all RefSeq genes
(40.5% of all annotated genes and 70.5% of genes containing paused
Pol II), which prompted us to conclude that most active/paused
genes contain the KAP1-7SK snRNP complex in the promoter-
proximal region. Clearly, our combined experimental/computational
approach is underestimating the number of genes targeted by the
7SK snRNP, as can be seen by the lack of one of the three 7SK
snRNP components (probably due to technical difficulties with
ChIP-seq and/or the peak calling algorithm) (Fig. 2C).

3.7. A statistical analysis defines that KAP1, the 7SK snRNP, and Pol II are
enriched at promoter-proximal regions of active/paused genes

We found that the majority of KAP1 and components of the 7SK
snRNP complex mapped to promoter and promoter-proximal regions
of most genes containing paused Pol II [1]. Given our proposed role of
KAP1-7SK snRNP in promoting transcriptional elongation,we examined
the overlap of KAP1-7SK snRNP with Pol II outside the promoter-
proximal region, and calculated p-values for co-occupancy using the
hypergeometric density distribution with the phyper function in the R
stats package. For this analysis, we collapsed the entire genome into
250 bp bins, removing any region that corresponded to −250 to
+1000 bp from the TSS. Using this window, we found that paused Pol
II is present at the promoter-proximal region of 17,316 genes, and that
the KAP1-7SK snRNP is present at the promoter proximal-region of
14,203 genes, which represents an intersection of 12,211 genes. This
overlap is significant at a p-value b 2.2204−16 (machine zero), as calcu-
lated using a hypergeometric density distribution. In addition,we found
paused Pol II at the promoter-proximal region of genes (n = 551)
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Fig. 2. Strategy to identify 7SK snRNP, KAP1-7SK snRNP and KEC (KAP1-7SK snRNP early Elongation Complex) target genes in the human genome. (A) Search for Pol II peak summit in the
promoter-proximal region. (B) Search for factor co-occupancy in the−250 to+250 bp region from the Pol II peak summit at promoter-proximal regions. (C) Factor co-occupancy analysis
as explained in panel (B).
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devoid of KAP1-7SK snRNP, indicating significant de-enrichment of
genes having paused Pol II but no (or very low levels) KAP1-7SK
snRNP at these sites (p-value b 2.2204−16). Together, this indicates
that Pol II and the KAP1-7SK snRNP significantly co-localize at
promoter-proximal regions.

3.8. KAP1 and the 7SK snRNP complex are deposited downstream of
paused Pol II

Given the high frequency of Pol II and KAP1-7SK snRNP co-
occupancy at promoter-proximal regions, we generated metagene
plots to define their average relative proximity to the TSS. The Pol II
metagene reveals that the average pause site occurs at about +100 bp
from the TSS (Fig. 3A and B), shifted slightly downstream of the paused
site originally identified in other Pol II Chip-chip or ChIP-seq datasets
[11–12]. These differences in Pol II pause site might be attributable to
the different species (humans or Drosophila) used in the experimental
approaches, number of genes being averaged depending on the spe-
cies analyzed, and/or mean signal densities. Higher resolution ap-
proaches like GRO-seq [13] and PRO-seq [14] concluded that Pol II
pauses, on average, at about +50 bp from the TSS thus showing
that our Pol II mean densities calculations might be accurate reflec-
tions of the broad distribution, and much lower resolution, obtained
with ChIP-seq.



Fig. 3. Mapping the location of KAP1 and the 7SK snRNP complex relative to the Pol II pause site. (A) Metagene analysis showing factor distribution surrounding the TSS with accurate
signal strengths. RPKM are Reads Per Kilobase of Transcript per Million mapped reads. (B) Metagene analysis showing factor distribution surrounding the TSS where the RPKM signal
was normalized to the maximum (Max) ChIP signal and expressed as percentage (%) for ease of comparison. (C) Metagene analysis showing the distribution of the chromatin
signatures (H3K4me3 and H3K27Ac) surrounding the TSS.
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Interestingly, the metagene profiles for components of the KAP1-
7SK snRNP complex peaked downstream of the Pol II pause site,
mirroring the active chromatin signatures H3K4me3 and H3K27Ac
(Fig. 3C), indicating that the average KAP1-7SK snRNP peak falls about
100–150 bp downstream of the paused Pol II summit. Additionally, we
also noticed a fairly broad distribution pattern (+200–250 bp from
the TSS) for KAP1 and components of the 7SK snRNP complex (Fig. 3A
and B). This might be attributable to the different placement of KAP1-
7SK snRNP complexes at distinct groups of genes respective to the
TSS. Further experimental and computational work is needed to define
groups of genes with different positioning of the KAP1-7SK snRNP com-
plex respective to the TSS and its functional relationship to chromatin
architecture and transcriptional status.
Fig. 4. Relationship between transcription activity, Pol II pausing, and recruitment of the KAP1-7
3.9. Relationship between transcription activity, Pol II pausing, and
recruitment of the KAP1-7SK snRNP to promoter-proximal regions

To define the relationship between Pol II pausing, KAP1-7SK snRNP
deposition at promoter-proximal regions and transcriptional levels,
we re-analyzed the nascent RNA-sequencing data (GRO-seq) generated
by the Espinosa laboratory [9]. After ranking RefSeq genes located in the
positive strand in the human genome based on decreasing levels of
transcription surrounding the TSS, we observed that the distribution
and levels of sense strand transcription mirror the occupancy levels of
paused Pol II and KAP1-7SK snRNP components (Fig. 4). Together, the
analysis indicates that paused Pol II and KAP1-7SK snRNP co-occupy
promoter-proximal regions of transcriptionally active/paused genes
SK snRNP to promoter-proximal regions. GRO-seq shows only positive strand information.
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and that there is a positive correlation between levels of paused Pol II
and KAP1-7SK snRNP at these sites.

4. Discussion

We described here an experimental approach to determine the oc-
cupancy of KAP1, the 7SK snRNP and Pol II in the human genome.
Using this collection of ChIP-seq datasets we demonstrated that the
transcriptional regulator KAP1 and the 7SK snRNP complex co-occupy
(with high frequency) promoter-proximal regions containing paused
Pol II. We propose that this collection will provide valuable information
for researchers studying mechanisms of transcriptional regulation, par-
ticularly Pol II pausing and pause release. Certainly, future experimental
and computational approaches are needed to further define if KAP1 re-
cruits the 7SK snRNP to most promoter-proximal regions containing
paused Pol II and whether the KAP1-7SK snRNP complex regulates
pause release genome-wide. Our main work has closely examined an-
notated transcripts but not divergent transcripts or non-coding RNAs.
Thus, it remains to be elucidated whether these unique non-coding
RNA species are also targeted by KAP1 and the 7SK snRNP or whether
they have unique regulatory strategies. Moreover, given that enhancers
play an important role in controlling gene activation from promoters
and because the 7SK snRNP appears to be recruited to these genomic
sites [15–16], future studies are needed to further define the role of
KAP1-7SK snRNP in controlling transcription from enhancers during
development and cell differentiation. Our work lays the foundation for
these future studies.
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